Isolation and X-ray Structure of Chloroarenium **Cations as Wheland Intermediates in Electrophilic Aromatic Chlorination**

Rajendra Rathore, Jürgen Hecht, and Jay K. Kochi*

Department of Chemistry, University of Houston Houston, Texas 77204-5641 Received September 17, 1998

Cationic σ -complexes (or benzenium ions) of aromatic hydrocarbons with various electrophiles are commonly accepted as transient (Wheland) intermediates in electrophilic aromatic substitutions.¹ Olah and co-workers were the first to obtain nearly 30 years ago² the direct spectroscopic (NMR) evidence for the existence of the NO₂⁺ and Cl⁺ complexes in magic acid solutions at -70 °C by using hexamethylbenzene as the prototypical aromatic donor. However, the isolation of these highly labile cations as crystalline salts for definitive structural characterization by X-ray crystallography has remained an experimental challenge. As such, we now report that the low-temperature chlorination of hexamethylbenzene (1) with antimony pentachloride in dichloromethane (under an argon atmosphere) leads to a bright yellow solution, which upon the addition of cold (-78 °C) hexane affords a highly unstable precipitate according to the stoichiometry in eq 1.3

$$\mathbf{1} + 2 \operatorname{SbCl}_5 \xrightarrow{-78 \, ^{\circ}\mathrm{C}} \mathbf{1} - \operatorname{Cl}^+ \operatorname{SbCl}_6^- + \operatorname{SbCl}_3$$
(1)

The identity of chlorohexamethylbenzenium cation $(1-Cl^+)$ in eq 1 is confirmed by comparison of the ¹H NMR spectrum with that reported by Olah et al., in which the yellow solution at -80°C shows the characteristic pattern of four singlets in an intensity ratio of 1:2:2:1 at δ 2.15, 2.67, 3.07, and 3.25 ppm.² However the isolated yellow salt is very labile and readily decomposes⁴ if simply warmed above -70 °C. After repeated attempts at crystallization (especially by varying the solvent and temperature), we have now successfully isolated the reactive yellow crystals by the slow diffusion of hexane into a dichloromethane solution of $1-Cl^+$ SbCl₆⁻ at -90 °C. Single-crystal analysis⁵ by X-ray crystallography at -150 °C establishes its molecular structure, and the ORTEP diagram in Figure 1 shows the chlorine atom to be bonded to a single carbon atom (C_1) . Such an attachment of a positive chlorine (Cl⁺) to hexamethylbenzene leads to the rehybridization of C_1 from sp² to sp³ (as judged by the change in bond angles)⁶ and to a planar cyclohexadienyl ring system in

Figure 1. ORTEP diagram showing chlorine attachment to a single carbon center in the chloroarenium cation 1-Cl⁺ from hexamethylbenzene.

which the bond lengths and angles are significantly altered as compared to neutral 1⁷ [e.g., C_1-C_2 (1.49 Å) and C_1-C_6 (1.50 Å) approximates a C-C single bond, and C_2-C_3 (1.36 Å) and C_5-C_6 (1.38 Å) shortens to a C-C double bond, whereas C_4 - C_3 (1.44 Å) and C_4-C_5 (1.43 Å) corresponds to an elongated C-C aromatic bond].

It is particularly noteworthy that the pertinent chlorine-carbon bond distance of 1.81 Å is within one standard deviation of that found in the σ -bonding of chlorine to quaternary carbon centers in other (stable) chlorocarbons.8 We further note that owing to the isosteric nature of chlorine and methyl groups, the chloroarenium cation 1-Cl⁺ is isostructural with the yellow heptamethylbenzenium cation $(1-CH_3^+)$,⁹ as underscored by comparison of the superimposed structures in Figure 2. [Compare the bond lengths/angles of 1-Cl⁺⁶ and 1-CH₃⁺.9] The strong similarity in the electronic structures of the chloro- and methylarenium cations is also indicated by the UV-vis spectra of 1-Cl⁺ ($\lambda_{max} = 410$ nm, log $\epsilon = 4.01$ M⁻¹ cm⁻¹) and **1**-CH₃⁺ ($\lambda_{max} = 398$ nm, $\epsilon =$ 3.94 M^{-1} cm⁻¹), as illustrated in Figure 3.

The same treatment of the homologous hexaethylbenzene (2) with antimony pentachloride at -78 °C affords the characteristic

with $T > 20(t_0)$. (6) The pertinent bond angles in 1-Cl⁺ are: $C_2-C_1-C_6 = 116.8^\circ$; $C_2-C_1-C_1 = 106.0^\circ$, $C_6-C_1-C_7 = 111.5^\circ$, and $C_7-C_1-C_1 = 105.7^\circ$. (7) X-ray crystallography at -150 °C establishes the aromatic C-C bond lengths in hexamethylbenzene (1) to be 1.410 Å (unpublished results). (8) (a) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A, G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1-S19. (b) Owing to the instrume of ablesing and the methyl group there is a clicht disorder the isosteric nature of chlorine and the methyl group there is a slight disorder $(\sim 20\%)$ in the structure of 1-Cl⁺ that could not be readily resolved. (c) Also note that the hexachloroantimonate anion is strongly coordinated to Cl as judged by the close contact of $Cl-ClSbCl_5 = 3.11$ Å.

Judged by the close contact of Cl–ClSbCl₅ = 3.11 A. (9) (a) Borodkin, G. I.; Nagi, S. M.; Gatilov, Y. V.; Shakirov, M. M.; Rybalvo, T. V.; Shubin, V. G. *Zh. Org. Khim* **1992**, 28, 1806 and references therein. (b) Compare also: Doering, W. von E.; Saunders, M.; Boyton, H. G.; Earhart, H. W.; Wadley, E. F.; Edwards, W. R.; Laber, G. *Tetrahedron* **1958**, 4, 178. (c) The equivalent bond lengths/angles in 1-CH₃⁺ are: C₁–C₂ (1.47 Å), C₂–C₃ (1.36 Å), C₃–C₄ (1.46 Å), C₄–C₅ (1.44 Å), C₅–C₆ (1.34 Å), C₁–C₆ (1.45 Å), C₁–CH₃ (1.59 Å), C₇–C₁–C₈ = 110°.

^{(1) (}a) Taylor, R. *Electrophilic Aromatic Substitutions*; Wiley: New York, 1990. (b) March, J. *Advanced Organic Chemistry*, 4th ed.; Wiley: New York, 1992. (c) For a review of arenium structures, see: Koptyug, V. A. Arenium Ions-Structure and Reactivity. In Comtemporary Problems in Carbonium Ion Reactivity, III; Rees, C. A., Ed., Springer: New York, 1984. See also: Reed, C. A. Acc. Chem. Res. **1998**, 31, 133. Reed, C. A.; Fackler, N.; Drovetskaya, T.; Evans, D. 215th National Meeting of the American Chemical Society, 1998; Inorg. Chem. Div., Abstract No. 202.

⁽²⁾ Olah, G. A.; Lin, H. C.; Mo, Y. K. J. Am. Chem. Soc. **1972**, 94, 3667. See also: Loktev, V. F.; Korchagina, D. V.; Shubin, V. G. Izv. Nauk SSSR Otd. Khim. Nauk **1974**, 10, 2374.

^{(3) (}a) For the stoichiometry of aromatic chlorination with SbCl₅, see: Rathore, R.; Kumar, A. S.; Lindeman, S. V.; Kochi, J. K. J. Org. Chem. **1998**, 63, 5847. (b) Compare: Kovacic, P.; Sparks, A. K. J. Am. Chem. Soc. 1960, 82, 5740. (c) The reduced SbCl₃ was isolated as a colorless crystalline complex [1, SbCl₃] from the reaction of excess 1 with SbCl₅ in dichloromethane at -90 °C, and its structure was confirmed by X-ray crystallography, unpublished results.

⁽⁴⁾ For reaction pathways leading to the rapid decomposition of chlorohexamethylbenzenium cation, see: Baciocchi, E.; Ciana, A.; Illuminati, G.; Pasini, C. J. Am. Chem. Soc. **1965**, 87, 3953. Kochi, J. K. Tetrahedron Lett. 1974, 4305 and related papers.

^{(5) (}a) Single crystals of 1-Cl⁺SbCl₆⁻ were obtained by dissolution in cold (-90 °C) dichloromethane followed by careful layering of the 0.01 M yellow solution with cold hexane and allowing the mixture to stand at -95 °C. (b) Crystal data for 1-Cl⁺ [(C₁₂H₁₈Cl)⁺ SbCl₆-CH₂Cl₂]. MW = 617.09, mono-clinic, P2₁/c, a = 9.289(2) Å, b = 12.1903(4) Å, and c = 23.4716(8) Å, $\beta = 93.792(1)^\circ$, Dc = 1.811 Mg m⁻³, V = 2263.70(12) Å³, Z = 4. Data collection was carried out at -150 °C on a Siemens SMART diffractometer equipped with a CCD detector, using Mo K α radiation ($\lambda = 0.71073$ Å). The total number of reflections measured were 20184, of which 6585 reflections were symmetrically nonequivalent. The structure was solved by direct methods and refined by full-matrix least-squares procedure. Final residuals were R1 = 0.067The field by the matrix least-squares proceeding. Final residuals were R1 = 0.004 and wR2 = 0.107 for 6529 reflections with $I > 2\sigma(I_0)$. Crystal data for 2'-Cl⁺ [(C₁₈H₃₀Cl)⁺ SbCl₆⁻⁻²CH₂Cl₂]. MW = 786.17, triclinic, P1, a = 10.4999(2) Å, b = 13.0007(2) Å, and c = 13.2270(1) Å, $\alpha = 100.915(1)^\circ$, $\alpha = 109.835$ -(1)°, and $\beta = 101.549(1)^\circ$, Dc = 1.634 Mg m⁻³, V = 1597.90(4) Å³, Z = 2. Final residuals were R1 = 0.041 and wR2 = 0.0.88 for 13689 reflections with $I > 2\sigma(I_0)$.

Communications to the Editor

Figure 2. Isostructural comparison of the chloro- and methylarenium cations as shown by the superposition of $1-Cl^+$ and $1-CH_3^+$.

Figure 3. UV-vis spectra of the chloroarenium cation 1-Cl⁺ and the methylarenium analogue 1-CH₃⁺ in dichloromethane solution.

yellow solution ($\lambda_{max} = 420 \text{ nm}$)¹⁰ that also yields pale yellow microcrystals by the workup procedure at -90 °C (vide supra). However, all attempts at low-temperature recrystallization and X-ray crystallographic analysis at -150 °C reveal the isomeric cation 2'-Cl⁺ shown in Figure 4,¹¹ in which the *gem*-diethyl group is clearly a result of the rapid isomerization of the first-formed chloroarenium cation, i.e.

$$2 + \text{SbCl}_5 \longrightarrow 2\text{-Cl}^+ \longrightarrow 2\text{'-Cl}^+ \qquad (2)$$

The facility of the 1,2-ethyl shift in eq 2 (relative to that pertaining to eq 1) is qualitatively in accord with the significantly enhanced migratory aptitude of the ethyl (relative to the methyl) group in Wagner–Meerwein rearrangements.¹²

The spectral observation (and isolation) of chloroarene cations is only feasible with the fully substituted hexaalkylbenzenes such as $1-Cl^+$ and $2-Cl^+$, since the analogous exposure of partially

(11) As an arenium cation, the relevant bond lengths/angles in 2'-Cl⁺ are essentially the same as those in 1-Cl⁺, i.e., C_1-C_2 (1.489 Å), C_2-C_3 (1.497 Å), C_3-C_4 (1.386 Å), C_4-C_5 (1.426 Å), C_5-C_6 (1.435 Å), C_1-C_6 (1.373 Å), C_1-Cl (1.721 Å), $C_{21}-C_2-C_{23} = 107.0^\circ$, $C_1-C_2-C_{21} = 110.5^\circ$, $C_3-C_2-C_{23} = 107.1^\circ$, and $C_1-C_2-C_3 = 113.6^\circ$.

Figure 4. The *gem*-diethyl groups in the arenium cation 2'-Cl⁺ resulting from the spontaneous Wagner–Meerwein rearrangement of the chloro-arenium cation 2-Cl⁺ during hexaethylbenzene chlorination.

methylated benzene donors to antimony pentachloride leads only to the corresponding chlorobenzenes. For example, the treatment of 0.1 M SbCl₅ with 1 equiv of mesitylene **3** (or pentamethylbenzene **4**) at -50 °C affords a yellow solution that takes on a pale-brown coloration with stirring for 15 min. However, rapid quenching at this temperature leads to a nearly quantitative yield of only chloromesitylene (86%) or chloropentamethylbenzene (93%). We conjecture that chloroarenium cations analogous to **1**-Cl⁺ and **2**-Cl⁺ are also generated from **3** and **4**, but their detection is not possible owing to their deprotonation that is faster than Cl⁺ transfer,² i.e.

If so, we believe the chloroarenium cation 1-Cl⁺ in Figure 1 serves as a excellent prototype for the Wheland intermediate in electrophilic aromatic chlorination.¹³ Indeed, the structural and electronic (near) identity of the chloro- and methylarenium cations in Figures 2 and 3 points to a series of 1-X-cyclohexadienylium structures for the Wheland intermediate that are not strongly affected by the electrophilic (X = Cl, CH₃) substituent.¹⁵ With this conclusion in mind, we hope to direct our attention to the highly elusive nitroarenium cations.

Acknowledgment. We thank the National Science Foundation and the Robert A. Welch Foundation for financial support.

Supporting Information Available: Crystallographic data for 1-Cl⁺ $[(C_{12}H_{18}Cl)^+ SbCl_6^{-}CH_2Cl_2]$ and 2'-Cl⁺ $[(C_{18}H_{30}Cl)^+ SbCl_6^{-}CH_2Cl_2]$ including positional parameters, thermal parameters, and interatomic distances and angles (10 pages, print/PDF). See any current masthead page for ordering information and Web access instructions.

JA983314J

⁽¹⁰⁾ Identified as **2**-Cl⁺ by its diagnostic ¹H NMR spectrum with δ 0.29 (br t, 6H), 1.17 (t, 6H), 1.35 (t, 3H), 1.39 (t, 3H), 2.62 (q, 4H), 2.74 (br q, 2H), 2.95 (br q, 2H), 3.07 (q, 4H) and ¹³C NMR spectrum with δ 12.64, 14.37 (2C), 15.22, 21.95, 23.74, 28.62, 29.65, 71.40, 147.71, 148.01, 189.02, 197.25, 207.27 ppm.

⁽¹²⁾ For example, the relative intramolecular migratory aptitude for Et/ Me = 30 obtains in the arenium cations from phenanthrene derivatives. See: Korchagina, D. V.; Derendyaev, B. G.; Shubin, V. G.; Koptyug, V. A. Zh. Org. Khim. 1976, 12, 384. Also see: Koptyug, V. A. Top. Curr. Chem. 1984, 122, 119. Shubin, V. G.; Borodkin, G. I. In Stable Carbocation Chemistry; Surya Prakash, G. K., Schleyer, P. v. R., Eds.; Wiley and Sons: New York, 1997, and references therein.

⁽¹³⁾ In this regard, the chloroarenium cation 1-Cl⁺ is a better model for the Wheland intermediate in electrophilic aromatic chlorination than the related chloroarenium cation derived from the tris-annelated benzene donor TMT (dodecahydrotrimethanotriphenylene).¹⁴ Indeed the latter (TMT-Cl⁺) shows an unusually red-shifted absorption band at $\lambda_{max} = 510$ nm and a rather long C₁-Cl distance of 1.86 Å arising from steric effects of tris-annelation in the nonplanar cyclohexadienylium moiety. We believe that the latter is also responsible for the greater reactivity of TMT-Cl⁺ (compared to 1-Cl⁺) in electrophilic (transfer) chlorination.

⁽¹⁴⁾ Rathore, R.; Loyd, S. H.; Kochi, J. K. J. Am. Chem. Soc. 1994, 116, 8414.

⁽¹⁵⁾ Especially in view of the fact that chlorine and carbon (CH₃) have substantially different electronegativities of 2.83 and 2.50, respectively.